1,941 research outputs found

    Impaired flush response to niacin skin patch among schizophrenia patients and their nonpsychotic relatives: The effect of genetic loading

    Get PDF
    We previously reported familial aggregation in flush response to niacin skin patch among schizophrenia patients and their nonpsychotic relatives. However, little is known about whether this abnormal skin response is associated with genetic loading for schizophrenia. This study compared the niacin flush response in subjects from families with only one member affected with schizophrenia (simplex families) with those from families having a sib-pair with schizophrenia (multiplex families). Subjects were patients with schizophrenia and their nonpsychotic first-degree relatives from simplex families (176 probands, 260 parents, and 80 siblings) and multiplex families (311 probands, 180 parents, and 52 siblings) as well as 94 healthy controls. Niacin patches of 3 concentrations (0.001M, 0.01M, and 0.1M) were applied to forearm skin, and the flush response was rated at 5, 10, and 15 minutes, respectively, with a 4-point scale. More attenuated flush response to topical niacin was shown in schizophrenia probands and their relatives from multiplex families than in their counterparts from simplex families, and the differentiation was better revealed using 0.1M concentration of niacin than 0.01M or 0.001M. For the highest concentration of 0.1M and the longest time lag of 15 minutes, a subgroup of probands (23%), parents (27%), and siblings (19%) still exhibited nonflush response. Flush response to niacin skin patch is more impaired in schizophrenia patients and their relatives from families with higher genetic loading for schizophrenia, and this finding has implications for future genetic dissection of schizophrenia. © 2008 The Authors.published_or_final_versio

    Changes in midbrain pain receptor expression, gait and behavioral sensitivity in a rat model of radiculopathy.

    Get PDF
    Intervertebral disc herniation may contribute to inflammatory processes that associate with radicular pain and motor deficits. Molecular changes at the affected dorsal root ganglion (DRG), spinal cord, and even midbrain, have been documented in rat models of radiculopathy or nerve injury. The objective of this study was to evaluate gait and the expression of key pain receptors in the midbrain in a rodent model of radiculopathy. Radiculopathy was induced by harvesting tail nucleus pulposus (NP) and placing upon the right L5 DRG in rats (NP-treated, n=12). Tail NP was discarded in sham-operated animals (n=12). Mechanical allodynia, weight-bearing, and gait were evaluated in all animals over time. At 1 and 4 weeks after surgery, astrocyte and microglial activation was tested in DRG sections. Midbrain sections were similarly evaluated for immunoreactivity to serotonin (5HT(2B)), mu-opioid (µ-OR), and metabotropic glutamate (mGluR4 and 5) receptor antibodies. NP-treated animals placed less weight on the affected limb 1 week after surgery and experienced mechanical hypersensitivity over the duration of the study. Astroctye activation was observed at DRGs only at 4 weeks after surgery. Findings for pain receptors in the midbrain of NP-treated rats included an increased expression of 5HT(2B) at 1, but not 4 weeks; increased expression of µ-OR and mGluR5 at 1 and 4 weeks (periaqueductal gray region only); and no changes in expression of mGluR4 at any point in this study. These observations provide support for the hypothesis that the midbrain responds to DRG injury with a transient change in receptors regulating pain responses

    Federated Learning Framework with Straggling Mitigation and Privacy-Awareness for AI-based Mobile Application Services

    Full text link
    This work proposes a novel framework to address straggling and privacy issues for federated learning (FL)-based mobile application services, considering limited computing/communications resources at mobile users (MUs)/mobile application provider (MAP), privacy cost, the rationality and incentive competition among MUs in contributing data to the MAP. Particularly, the MAP first determines a set of the best MUs for the FL process based on MUs' provided information/features. Then, each selected MU can encrypt part of local data and upload the encrypted data to the MAP for an encrypted training process, in addition to the local training process. For that, the selected MU can propose a contract to the MAP according to its expected local and encrypted data. To find optimal contracts that can maximize utilities while maintaining high learning quality of the system, we develop a multi-principal one-agent contract-based problem considering the MUs' privacy cost, the MAP's limited computing resources, and asymmetric information between the MAP and MUs. Experiments with a real-world dataset show that our framework can speed up training time up to 49% and improve prediction accuracy up to 4.6 times while enhancing network's social welfare up to 114% under the privacy cost consideration compared with those of baseline methods

    Photoreduction of Shewanella oneidensis Extracellular Cytochromes by Organic Chromophores and Dye-Sensitized TiO2.

    Get PDF
    The transfer of photoenergized electrons from extracellular photosensitizers across a bacterial cell envelope to drive intracellular chemical transformations represents an attractive way to harness nature's catalytic machinery for solar-assisted chemical synthesis. In Shewanella oneidensis\textit{Shewanella oneidensis} MR-1 (MR-1), trans-outer-membrane electron transfer is performed by the extracellular cytochromes MtrC and OmcA acting together with the outer-membrane-spanning porin\cdotcytochrome complex (MtrAB). Here we demonstrate photoreduction of solutions of MtrC, OmcA, and the MtrCAB complex by soluble photosensitizers: namely, eosin Y, fluorescein, proflavine, flavin, and adenine dinucleotide, as well as by riboflavin and flavin mononucleotide, two compounds secreted by MR-1. We show photoreduction of MtrC and OmcA adsorbed on RuII^{\text{II}}-dye-sensitized TiO2_2 nanoparticles and that these protein-coated particles perform photocatalytic reduction of solutions of MtrC, OmcA, and MtrCAB. These findings provide a framework for informed development of strategies for using the outer-membrane-associated cytochromes of MR-1 for solar-driven microbial synthesis in natural and engineered bacteria.This work was supported by the UK Biotechnology and Biological Sciences Research Council (grants BB/K009753/1, BB/K010220/1, BB/K009885/1, and BB/K00929X/1), the Engineering and Physical Sciences Research Council (EP/M001989/1, PhD studentship 1307196 to E.V.A.), a Royal Society Leverhulme Trust Senior Research Fellowship to J.N.B., the Christian Doppler Research Association, and OMV group

    An auto TCD probe design and visualization

    Get PDF
    Transcranial Doppler ultrasound (TCD) is a non-invasive ultrasound method used to examine blood circulation within the brain. During TCD, ultrasound waves are transmitted through the tissues including skull. These sound waves reflect off blood cells moving within the blood vessels, allowing the radiologist to interpret their speed and direction. In this paper, an auto TCD probe is developed to control the 2D deflection angles of the probe. The techniques of Magnetic Resonance Angiography (MRA) and Magnetic Resource Imagine (MRI) have been used to build the 3D human head model and generate the structure of cerebral arteries. The K-Nearest Neighbors (KNN) algorithm as a non-parametric method has been used for signal classification and regression of corresponding arteries . Finally, a global search and local search algorithms are used to locate the ultrasound focal zone and obtain a stronger signal efficient and more accurate result

    Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    Get PDF
    CONTEXT: Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. CASE PRESENTATION: Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. DISCUSSION: Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction–type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. RELEVANCE TO CLINICAL OR PROFESSIONAL PRACTICE: In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers’ health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent
    corecore